NロロロTJT｜P｜B

Comprehensive Transportation Plan

Town of Yadkinville

February 2011

Comprehensive Transportation Plan

Town of Yadkinville

Prepared by: Michael Abuya, EIT, Project Engineer
Wayne Davis, Ph.D., PE, Triad Planning Group
Supervisor
Transportation Planning Branch
N.C. Department of Transportation
In Cooperation with: Town of Yadkinville
Northwest Piedmont Rural Planning Organization

Executive Summary

In July of 2008, the Transportation Planning Branch of the North Carolina Department of Transportation and the Town of Yadkinville initiated a study to cooperatively develop the Town of Yadkinville Comprehensive Transportation Plan (CTP). This is a long range multi-modal transportation plan that covers transportation needs through 2035. Modes of transportation evaluated as part of this plan include: highway, public transportation and pedestrian. This plan does not cover standard bridge replacements, routine maintenance, or minor operations issues. Refer to Appendix A for contact information on these types of issues.

Findings of this CTP study were based on an analysis of the transportation system, environmental screening, and public input. Refer to Figure 1 for the CTP maps, which were mutually endorsed/adopted in 2010. Implementation of the plan is the responsibility of the Town of Yadkinville and NCDOT. Refer to Chapter 1 for information on the implementation process.

This report documents the recommendations for improvements that are included in the Town of Yadkinville CTP. The major recommendations for improvements are listed below. More detailed information about these and other recommendations can be found in Chapter 1.

Highway

- US 601 (State St) - Widen to 3-lanes with a center lane from the southern Planning Area Boundary, just south of South Deep Creek, to US 421 and from Main St (SR $1605 /$ SR 1314) to the northern Planning Area Boundary at Dobbins Pond.
- Main St/Old US 421 (SR 1314/SR 1605) - Widen to 3-lanes with a center turn lane from Unifi Industrial Dr (SR 1765) to Progress Ln (SR 1634) and from Washington St to W Lee Ave (SR 1134).
- Lee Ave (SR 1146/SR 1134) - Widen from 2 to 3-lanes with a center turn lane from Unifi Industrial Dr (SR 1765) to Progress Ln (SR 1634) and from US 601 to W Main St (SR 1314).
- Progress Ln (SR 1634) Extension - Construct a 2-lane minor thoroughfare from E Lee Ave (SR 1146) to Sara Lee Blvd (SR 1421).
- Unifi Industrial Dr (SR 1765) Extension - Construct a 2-lane minor thoroughfare from E Main St/Old US 421 (SR 1605) to Mackie Rd (SR 1500).
- Proposed US 421 Connector and Interchange - Construct a new interchange on US 421 south of the Stone Bridge Dr (SR 1131) and Beamer Rd (SR1415) intersection and construct a 2-lane minor thoroughfare on new location from the proposed US 421 interchange to Stone Bridge Dr (SR 1134).
- Beamer Rd (SR 1415) Realignment - Re-align Beamer Rd (SR1415) just north of the proposed interchange on US 421.

Public Transportation and Rail

The Piedmont Authority for Regional Transportation (PART) operates a fixed-route bus service between Greensboro and Boone. The bus route crosses the planning area on US 421 and has an existing park and ride lot at US 601 and Pine Valley Rd, south of the interchange. A proposed park and ride lot, which will replace the existing one, will be located on US 601 at Sara Lee Blvd (SR1421).

Bicycle

There are no existing or recommended bicycle facilities included in the study area.

Pedestrian

Pedestrian facilities that have been identified as existing or recommended are shown in the Pedestrian Map.

For more details please refer to the 2010 Town of Yadkinville Pedestrian Study.

Table of Contents

I. Recommendations I-1
Implementation I-1
Problem Statements \& Project Descriptions I-2
Highway I-2
Public Transportation and Rail I-9
Bicycle I-9
Pedestrian Map I-9
II. Analysis of the Existing and Future Transportation System II-1
Analysis Methodology and Data Requirements II-1
Roadway System Analysis II-1
Traffic Crash Analysis II-2
Bridge Deficiency Assessment II-9
Public Transportation and Rail II-9
Public Transportation II-9
Rail II-10
Bicycles and Pedestrians II-10
Land Use II-11
Consideration of the Natural and Human Environment II-15
Public Involvement II-19

Appendices

Appendix A: Resources and Contacts A-1
Appendix B: Comprehensive Transportation Plan Definitions B-1
Appendix C: CTP Inventory and Recommendations C-1
Appendix D: Typical Cross-Sections D-1
Appendix E: Level of Service Definitions F-1
Appendix F: Traffic Crash Analysis E-1
Appendix G: Bridge Deficiency Assessment G-1
Appendix H: Public Involvement H-1

List of Figures

Figure 1 Comprehensive Transportation Plan I-11
Figure 2 Existing Roadway Deficiency II-3
Figure 3 Future Roadway Deficiency II-5
Figure 4 High Crash Locations II-7
Figure 6 Land Development Plan II-13
Figure 7 Environmental Features II-17
Figure 8 Typical Cross Sections D-2
Figure 9 Level of Service Illustrations E-2

List of Tables

Table 1 Environmental Features II-15
Table 2 Restricted Environmental Features II-16
Table 3 CTP Inventory and Recommendations C-2
Table 4 Crash Locations F-1
Table 5 Deficient Bridges G-2

I. Recommendations

A Comprehensive Transportation Plan (CTP) is developed to ensure that the progressively developed transportation system will meet the needs of the region for the planning period. The CTP serves as an official guide to providing a well-coordinated, efficient, and economical transportation system for the future of the region. This document should be utilized by the local officials to ensure that planned transportation facilities reflect the needs of the public, while minimizing the disruption to local residents, businesses and the environment.

This report documents the development of the 2010 Town of Yadkinville CTP as shown in Figure 1. This chapter presents recommendations for each mode of transportation in the Town.

Implementation

The CTP is based on the projected growth for the planning area. It is possible that actual growth patterns will differ from those logically anticipated. As a result, it may be necessary to accelerate or delay the implementation of some recommendations found within this plan. Some portions of the plan may require revisions in order to accommodate unexpected changes in development. Therefore, any changes made to one element of the Comprehensive Transportation Plan should be consistent with the other elements.

Initiative for implementing the CTP rests predominately with the policy boards and citizens of the Town. As transportation needs throughout the State exceed available funding, it is imperative that the local planning area aggressively pursue funding for priority projects. Projects should be prioritized locally and submitted to the Northwest Piedmont RPO for regional prioritization and submittal to NCDOT. Refer to Appendix A for contact information on funding. Local governments may use the CTP to guide development and protect corridors for the recommended projects. It is critical that NCDOT and local government coordinate on relevant land development reviews and all transportation projects to ensure proper implementation of the CTP. Local governments and the North Carolina Department of Transportation share the responsibility for access management and the planning, design and construction of the recommended projects.

Following are problems statements for each recommendation, organized by CTP modal element.

Problem Statements

HIGHWAY ELEMENT

US 601 (State St)
ID No.: YADK0001-H
Proposed improvements from PAB (South) to US 421 and from Main St to PAB (North)

Identified Problem

US 601 (State St) is projected to be over capacity by 2035 from the southern planning area boundary to US 421 and from Main St (SR 1605/SR 1314) to the northern planning area boundary. The primary purpose of improving US 601 is to relieve congestion on the existing facility such that a minimum of Level of Service (LOS) D can be achieved.

Justification of Need

US 601 is a major north-south corridor in Yadkin County, connecting the Town of Yadkinville with rural areas along the central region of the county. The facility is a vital artery in moving people and goods through North Carolina, connecting I-74, US 421, I40 and I-85.

US 601 is currently a 2-lane major thoroughfare from the southern planning area boundary to US 421 and from Main St (SR 1605/SR 1314) to the northern planning area boundary. It is a 4-lane undivided major thoroughfare from US 421 to Main St (SR 1605/SR 1314).

By 2035 segments of the facility are projected to be over capacity in the Yadkinville area based on the capacity of providing a LOS D. South of Yadkinville, traffic is projected to increase from 8,900 vehicles per day (vpd) in 2009 to 10,700 vpd in 2035, compared to a capacity of 9000 vpd. North of Yadkinville, traffic is projected to increase from between 6,900 and 9,500 vpd in 2009 to between 9,700 and 11,300 vpd in 2035, compared to a capacity of $9,000 \mathrm{vpd}$.

Crash data analysis for the period between 2006 and 2008 showed 10 or more crashes at the following intersections along US 601: Main Street (SR 131314/SR1605), Lee Ave (SR 1146), Maple St, Beroth Dr (SR 1415), US 421 and Sharon Rd (SR 1742). For more details, please refer to the Figure 4 and Appendix F.

Community Vision and Problem History

Due to US 601 being the primary access to the Town of Yadkinville, as well a connection to US 421, moderate growth is expected along the corridor.

US 601 passes through general commercial area between US 421 and the Central Business District. It does not provide a high-speed route as it traverses Yadkinville. The lower speeds and traffic signals in the area are more conducive to pedestrian and local vehicular traffic.

Respondents to Goals and Objectives Survey question that asked, "What roads would the community most like to have improved access?", ranked US 601 at the top.

CTP Project Proposal

Project Description and Overview

The CTP project proposal (Local ID YADK0001-H) is to widen US 601 from a 2-lane to a 3-lane major thoroughfare with center turn lane from the southern planning area boundary to US 421 and from Main St (SR 1605/SR 1314) to the northern planning area boundary.

The CTP project proposal for US 601 would reduce congestion, provide efficiency and improve safety for through traffic by removing left turns from through movement. The CTP recommendation would provide for a LOS D or better along existing US 601 (State St) through Yadkinville.

Linkages to Other Plans and Proposed Project History

The proposed improvements for US 601 are an important link to many of the recommendations in the Town of Yadkinville CTP and the 2005 Yadkin County CTP. The proposed improvements of US 601 (State St) are consistent with the recommendations in the county CTP.

The 2005 Yadkin County CTP recommends widening of US 601 to 12 foot lanes with 2 feet paved shoulder and adding turn lanes at key intersections.

Land Use Patterns

Current land use along US 601 corridor is generally rural with some residential, south of US 421 and north of Main St (SR 1605/SR 1314) and commercial between US 421 and Main St. The 2025 Town of Yadkinville Land Use Plan shows the corridor along US 601 as primarily moderate density residential, south of US 421 and north of Main St (SR 1605/SR 1314), and commercial between US 421 and Main St.

Natural \& Human Environmental Context

The proposed improvements have the potential to impact the Water Supply Watershed and a river crossing in the vicinity of South Deep Creek, and the wetland at Dobbins Pond.

Multi-modal Considerations

The CTP includes recommendations for pedestrian facilities around the Yadkinville area. There is a recommendation to improve the existing sidewalk and extend it along US 601 from the southern to the northern municipal boundary. An existing park and ride lot on US 601 at Pine Valley Rd and a new park and ride lot, to replace the existing one, is proposed to be located on US 601 at Sara Lee Blvd (SR1421).

Public/ Stakeholder Involvement

No significant issues associated with this project were identified during the public/stakeholder involvement process. From the Goals and Objectives survey, US 601 ranked at the top as the road the community would like to have improved access.

Unifi Industrial Dr (SR 1765)
ID No.: YADK0012-H
Proposed extension from Main St (SR 1605) to
Mackie Rd (SR 1500)

Last updated on: 02/01/2011

Identified Problem

Unifi Industrial Dr (SR 1765) currently terminates at Main St (SR 1605) and does not meet the mobility and connectivity needs of the Town. The primary purpose of this improvement is to provide better north-south mobility and connectivity around the town center and to provide an alternate north-south route between US 421 and US 601 on the eastern side of Yadkinville.

Justification of Need

Unifi Industrial Dr (SR 1765) is currently a north-south facility between Main St (SR 1605) and US 421. Extending it north to the existing Mackie Rd (SR 1500) is needed to improve connectivity, provide an alternate route between US 601 north and US 421 that bypasses the Yadkinville central business district and to provide improved access to an industrial area.

Community Vision and Problem History
Currently US 601 is the primary north-south travel corridor through the Town of Yadkinville. Extending Inifi Industrial Dr will provide an alternate north-south travel corridor east of Yadkinville. Together with other existing facilities, the proposed Unifi Industrial Dr Extension will also form a radial loop that will improve connectivity and mobility around the Town of Yadkinville.

Land use in the vicinity of the proposed project is currently residential and industrial and is envisioned to be moderate density residential and industrial. Constructing Unifi Industrial Dr extension will provide improved access to this area.

CTP Project Proposal

Project Description and Overview

The CTP project proposal (Local ID YADK0012) is to construct a two-lane minor thoroughfare on new location, extending Unifi Industrial Dr from Main St (SR 1605) to Mackie Rd (SR 1500).

Land Use Patterns

Land use in the vicinity of the proposed project currently residential and industrial and is envisioned to be moderate density residential and industrial in future.

Natural \& Human Environmental Context

The proposed improvements have the potential to impact the wetlands in the vicinity of North Deep Creek.

Multi-modal Considerations

There are no other modes of transportation associated with this proposed project.

Public/ Stakeholder Involvement

No significant issues associated with this project were identified during the public/stakeholder involvement process.

Beamer Rd/Beroth Dr (SR1415) Realignment, Local ID: YADK0002-H

The existing Beamer Rd/Beroth Dr (SR 1415) is an east-west facility between US 601 (Main St) and Stone Bridge Dr (SR 1134). Re-aligning it is needed to eliminate the sharp curves just east of Stone Bridge Dr intersection. Future land use along this corridor is expected to be high density residential and commercial.

The CTP project proposal (Local ID YADK0002-H) is to realign the existing facility on new location (two-lane minor thoroughfare); just north of the proposed US 421 interchange.

Proposed US 421 - Beamer Rd Connector and Interchange, Local ID: YADK0003-H

A new interchange is needed on US 421 south of the Stone Bridge Dr (SR 1134) and Beamer Rd (SR 1415) intersection to provide an alternate access point on US 421. Future land use in the vicinity of the proposed project is envisioned to be moderate density residential. This interchange in conjunction with the proposed connector from US 421 to Stone Bridge $\operatorname{Dr}(S R 1134)$ is needed to provide alternate access point to north-south travelers across the Town of Yadkinville.

The CTP project proposal (Local ID YADK0003-H) is to provide a new interchange on US 421 and to construct connector (two-lane minor thoroughfare) on new location.

Lee Ave (SR 1134/SR 1136), Local ID: YADK0005-H
Lee Ave (SR 1146) between Unifi Industrial Dr (SR 1765) and Progress Lane (SR 1634), and between US 601 (State St) and W Main St (SR 1314) are expected to be over capacity by 2035. Improvements are needed to accommodate projected traffic in order to maintain a Level of Service "D".

Lee Ave (SR 1146) between Unifi Industrial Dr (SR 1765) and Progress Lane (SR 1634), and between US 601 (State St) and W Main St (SR 1314) currently has a twolane, 18 -foot cross section. The 2009 annual average daily traffic (AADT) ranges between 5,100 and 5,800 vehicles per day (vpd); by 2035, the AADT is projected to range between 9,000 and $9,200 \mathrm{vpd}$ compared to a capacity of $8,000 \mathrm{vpd}$. The CTP project proposal (Local ID YADK0005-H) is to widen to a three-lane minor thoroughfare, with center left turn lane.

Main St/Old US 421 (SR 1314/SR 1605), Local ID: YADK0008-H

E Main St (SR 1605) between Unifi Industrial Dr (SR 1765) and Progress Lane (SR 1634) and W Main St (SR 1314) between Washington St and W Lee Ave (SR 1134) are expected to be near capacity by 2035 . Improvements are needed to accommodate projected traffic in order to maintain a Level of Service "D".

E Main St (SR 1605) between Unifi Industrial Dr (SR 1765) and Progress Lane (SR 1634) currently has a two-lane, 18 -foot cross section. The 2009 AADT is 6,200 vehicles per day (vpd); by 2035, the AADT is projected to be $7,000 \mathrm{vpd}$ compared to a capacity of 9,000 vpd. W Main St (SR 1314) between Washington St and W Lee Ave (SR 1134) currently has a two-lane, 20 to 32 -foot cross section. The 2009 AADT is 5,100 vehicles per day (vpd); by 2035 , the AADT is expected to be $7,400 \mathrm{vpd}$ compared to a capacity of 9,000 . The CTP project proposal (Local ID YADK0008-H) is to widen to a three-lane major thoroughfare, with center turn lane.

Progress Ln (SR 1634) Extension, Local ID: YADK0009-H

Progress Ln (SR 1634) is currently a north-south facility between Main St (SR 1605) and Lee Ave (SR 1146). Extending it south to the existing Sara Lee Ave (SR 1421) is needed to improve connectivity and also provide additional access to an area that is envisioned to be of industrial land use in future.

The CTP project proposal (Local ID YADK0009-H) is to construct a two-lane minor thoroughfare on new location.

Minor Widening Improvements

The following routes do not currently have capacity issues, but are recommended to be upgraded to two 12-foot lanes with 2-foot paved shoulders to improve safety:

- Hoots Rd (SR 1150), Local ID YADK0004-H - From US 601 to the western Planning Area Boundary
- N. Lee Ave (SR 1134), Local ID YADK0006-H - From US 601 to W Main St (SR 1314)
- Main St (SR 1314/SR 1605), Local ID YADK0007-H - From eastern Planning Area Boundary to Union Cross Church Rd (SR 1509), from Myers Rd (SR 1508) to Unifi Industrial Dr (SR 1765) and from W Lee Ave (SR 1134) to the western Planning Area Boundary
- Sara Lee Blvd (SR 1421), Local ID YADK0010-H - From US 601 to the proposed Progress Lane Extension
- Stone Bridge Dr (SR 1134), Local ID YADK0011-H - From W Lee Ave (SR 1146) to Fleming Rd (SR 1142).

PUBLIC TRANSPORTATION AND RAIL ELEMENT

The Piedmont Authority for Regional Transportation (PART) operates a fixed-route bus service between Greensboro and Boone. The bus route crosses the planning area on US 421 and has an existing park and ride lot on US 601 at Pine Valley Rd, south of the interchange.

Proposed park and ride lot, Local ID: TRAN0001-T

A proposed park and ride lot, which will replace the existing one, will be located on US 601 at Sara Lee Blvd (SR1421).

BICYCLE ELEMENT

There were no existing or recommended bicycle facilities in the study area.

PEDESTRIAN ELEMENT

Pedestrian facilities that have been identified in the study area are shown on the Pedestrian Map (Figure 1-Sheet 3). For more details please refer to the 2010 Town of Yadkinville Pedestrian Study.

II. Analysis of the Existing and Future Transportation System

In order to develop a Comprehensive Transportation Plan (CTP), the following are considered:

- Analysis of the transportation system, including any local and statewide initiatives;
- Impacts to the natural and human environment, including natural resources, historic resources, homes, and businesses;
- Public input, including community vision and goals and objectives.

Analysis Methodology and Data Requirements

Reliable forecasts of future travel patterns must be estimated in order to analyze the ability of the transportation system to meet future travel demand. These forecasts depend on careful analysis of the character and intensity of existing and future land use and travel patterns.

An analysis of the transportation system looks at both current and future travel patterns and identifies existing and anticipated deficiencies. This is usually accomplished through a capacity deficiency analysis, a traffic crash analysis, and a system deficiency analysis. This information, along with population growth, economic development potential, and land use trends, is used to determine the potential impacts on the future transportation system.

Roadway System Analysis

An important stage in the development of a CTP is the analysis of the existing transportation system and its ability to serve the area's travel desires. Emphasis is placed not only on detecting the existing deficiencies, but also on understanding the causes of these deficiencies. Roadway deficiencies may result from inadequacies such as pavement widths, intersection geometry, and intersection controls; or system problems, such as the need to construct missing travel links, bypass routes, loop facilities, or additional radial routes.

In the development of this plan, travel demand was projected from 2009 to 2035 using a trend line analysis based on Annual Average Daily Traffic (AADT) from 1990 to 2007. In addition, local land use plans and growth expectations were used to further refine future growth rates and patterns. The established future growth rates were endorsed by the Town of Yadkinville in November 2009.

Existing and future travel demand is compared to existing roadway capacities. Capacity deficiencies occur when the traffic volume of a roadway exceeds the roadway's capacity. Roadways are considered near capacity when the traffic volume is at least
eighty percent of the capacity. Refer to Figures 2 and 3 for existing and future capacity deficiencies.

Capacity is the maximum number of vehicles which have a "reasonable expectation" of passing over a given section of roadway, during a given time period under prevailing roadway and traffic conditions. Many factors contribute to the capacity of a roadway including the following:

- Geometry of the road (including number of lanes), horizontal and vertical alignment, and proximity of perceived obstructions to safe travel along the road;
- Typical users of the road, such as commuters, recreational travelers, and truck traffic;
- Access control, including streets and driveways, or lack thereof, along the roadway;
- Development along the road, including residential, commercial, agricultural, and industrial developments;
- Number of traffic signals along the route;
- Peaking characteristics of the traffic on the road;
- Characteristics of side-roads feeding into the road; and
- Directional split of traffic or the percentages of vehicles traveling in each direction along a road at any given time.

The relationship of travel demand compared to the roadway capacity determines the level of service (LOS) of a roadway. Six levels of service identify the range of possible conditions. Designations range from LOS A, which represents the best operating conditions, to LOS F, which represents the worst operating conditions.

LOS D indicates "practical capacity" of a roadway, or the capacity at which the public begins to express dissatisfaction. The practical capacity for each roadway was developed based on the 2000 Highway Capacity Manual using the NCLOS Program. Recommended improvements and overall design of the transportation plan were based upon achieving a minimum LOS D on existing facilities and a LOS C for new facilities. Refer to Appendix E for detailed information on LOS.

Traffic Crash Analysis

Traffic crashes are often used as an indicator for locating congestion and roadway problems. Crash patterns obtained from an analysis of crash data can lead to the identification of improvements that will reduce the number of crashes. A crash analysis was performed for the Town of Yadkinville CTP for crashes occurring in the planning area between January 1, 2006 and December 31, 2008. During this period, a total of 7 intersections were identified as high crash locations as illustrated in Figure 4. Refer to Appendix F for a detailed crash analysis.

Bridge Deficiency Assessment

Bridges are a vital and unique element of a highway system. First, they represent the highest unit investment of all elements of the system. Second, any inadequacy or deficiency in a bridge reduces the value of the total investment. Third, a bridge presents the greatest opportunity of all potential highway failures for disruption of community welfare. Finally, and most importantly, a bridge represents the greatest opportunity of all highway failures for loss of life. For these reasons, it is imperative that bridges be constructed to the same design standards as the system of which they are a part.

The NCDOT Bridge Maintenance Unit inspects all bridges in North Carolina at least once every two years. Bridges having the highest priority are replaced as Federal and State funds become available. The following three bridges were identified as deficient within the planning area; bridge numbers 69, 154 and 220. Refer to Appendix G for more detailed information.

Public Transportation and Rail

Public transportation and rail are vital modes of transportation that give alternative options for transporting people and goods from one place to another.

Public Transportation

North Carolina's public transportation systems serve more than 50 million passengers each year. Five categories define North Carolina's public transportation: community, regional community, urban, regional urban and intercity.

- Community Transportation - Local transportation efforts formerly centered on assisting clients of human service agencies. Today, the vast majority of rural systems serve the general public as well as those clients.
- Regional Community Transportation - Regional community transportation systems are composed of two or more contiguous counties providing coordinated / consolidated service. Although such systems are not new, the NCDOT Board of Transportation is encouraging single-county systems to consider mergers to form more regional systems.
- Urban Transportation - There are currently nineteen urban transit systems operating in North Carolina, from locations such as Asheville and Hendersonville in the west to Jacksonville and Wilmington in the east. In addition, small urban systems are at work in three areas of the state. Consolidated urban-community transportation exists in five areas of the state. In those systems, one transportation system provides both urban and rural transportation within the county.
- Regional Urban Transportation - Regional urban transit systems currently operate in three areas of the state. These systems connect multiple municipalities and counties.
- Intercity Transportation - Intercity bus service is one of a few remaining examples of privately owned and operated public transportation in North Carolina. Intercity buses serve many cities and towns throughout the state and provide connections to locations in neighboring states and throughout the United States and Canada. Greyhound/Carolina Trailways operates in North Carolina. However, community, urban and regional transportation systems are providing increasing intercity service in North Carolina.

An inventory of existing and planned fixed public transportation routes for the planning area is presented on Sheet 3 of Figure 1. The Piedmont Authority for Regional Transportation (PART) operates a fixed-route bus service between Greensboro and Boone that crosses the planning area on US 421. An existing park and ride lot is located on US 601 at Pine Valley Rd, south of the interchange.

All recommendations for public transportation were coordinated with the local governments and the Public Transportation Division of NCDOT. Refer to Appendix A for contact information.

Rail

Today North Carolina has 3,684 miles of railroad tracks throughout the state. There are two types of trains that operate in the state, passenger trains and freight trains.

The North Carolina Department of Transportation sponsors two passenger trains, the Carolinian and Piedmont. The Carolinian runs between Charlotte and New York City, while the Piedmont train carries passengers from Raleigh to Charlotte and back everyday. Combined, the Carolinian and Piedmont carry more than 200,000 passengers each year.

There are two major freight railroad companies that operate in North Carolina, CSX Transportation and Norfolk Southern Corporation. Also, there are more than 20 smaller freight railroads, known as shortlines.

There is no existing or planned rail system that serves the Town of Yadkinville planning area. Refer to Appendix A for contact information for the Rail Division of NCDOT.

Bicycles \& Pedestrians

Bicyclists and pedestrians are a growing part of the transportation equation in North Carolina. Many communities are working to improve mobility for both cyclists and pedestrians.

NCDOT's Bicycle Policy, updated in 1991, clarifies responsibilities regarding the provision of bicycle facilities upon and along the 77,000-mile state-maintained highway system. The policy details guidelines for planning, design, construction, maintenance,
and operations pertaining to bicycle facilities and accommodations. All bicycle improvements undertaken by the NCDOT are based upon this policy.

The 2000 NCDOT Pedestrian Policy Guidelines specifies that NCDOT will participate with localities in the construction of sidewalks as incidental features of highway improvement projects. At the request of a locality, state funds for a sidewalk are made available if matched by the requesting locality, using a sliding scale based on population.

NCDOT's administrative guidelines, adopted in 1994, ensure that greenways and greenway crossings are considered during the highway planning process. This policy was incorporated so that critical corridors which have been adopted by localities for future greenways will not be severed by highway construction.

Inventories of existing and planned pedestrian facilities for the planning area are presented on Sheet 5 of Figure 1. There are no existing or recommended bicycle facilities within the study. The 2010 Town of Yadkinville Pedestrian Study was utilized in the development of the pedestrian element of the CTP. All recommendations for pedestrian facilities were coordinated with the local governments and the NCDOT Division of Bicycle and Pedestrian Transportation. Refer to Appendix A for contact information.

Land Use

G.S. §136-66.2 requires that local areas have a current (less than five years old) land development plan prior to adoption of the CTP. For this CTP, the 2025 Town of Yadkinville Land Development Plan (Adopted 2005) was used to meet this requirement and is illustrated in Figures 6.

Land use refers to the physical patterns of activities and functions within an area. Traffic demand in a given area is, in part, attributed to adjacent land use. For example, a large shopping center typically generates higher traffic volumes than a residential area. The spatial distribution of different types of land uses is a predominant determinant of when, where, and to what extent traffic congestion occurs. The travel demand between different land uses and the resulting impact on traffic conditions varies depending on the size, type, intensity, and spatial separation of development. Additionally, traffic volumes have different peaks based on the time of day and the day of the week. For transportation planning purposes, land use is divided into the following categories:

- Residential: Land devoted to the housing of people, with the exception of hotels and motels which are considered commercial.
- Commercial: Land devoted to retail trade including consumer and business services and their offices; this may be further stratified into retail and special retail classifications. Special retail would include high-traffic establishments,
such as fast food restaurants and service stations; all other commercial establishments would be considered retail.
- Industrial: Land devoted to the manufacturing, storage, warehousing, and transportation of products.
- Public: Land devoted to social, religious, educational, cultural, and political activities; this would include the office and service employment establishments.
- Agricultural: Land devoted to the use of buildings or structures for the raising of non-domestic animals and/or growing of plants for food and other production.
- Mixed Use: Land devoted to a combination of any of the categories above.

Anticipated future land development is, in general, a logical extension of the present spatial land use distribution. Locations and types of expected growth within the planning area help to determine the location and type of proposed transportation improvements.

The Town of Yadkinville primarily anticipates growth in areas designated as "High Density Residential" or "General Commercial" areas. Community areas, as depicted in Figure 6, encompass residential, commercial and public land uses. These areas tend to be established populated areas and are located throughout the municipality, typically along major routes. Significant residential and commercial (mixed lands use) growth is expected in the area north west of US 421 and US 601 interchange, while industrial growth is expected in the area northeast of the interchange.

Consideration of Natural and Human Environment

In recent years, the environmental considerations have come to the forefront of the transportation planning process. Section 102 of the National Environmental Policy Act (NEPA) requires consideration of impacts on wetlands, wildlife, water quality, historic properties, and public lands. While a full NEPA evaluation was not conducted as part of the CTP, potential impacts to these resources were identified as a part of the project recommendations in Chapter 1 of this report. Prior to implementing transportation recommendations of the CTP, a more detailed environmental study would need to be completed in cooperation with the appropriate environmental resource agencies.

A full listing of environmental features that were examined as a part of this study is shown in the following table utilizing the best available data. Environmental features occurring within the Town of Yadkinville planning area are shown in Figures 7 and 8 .

Table 1 - Environmental Features

- Air Quality Pollution Discharge Points
- Ambient Water Quality Monitoring Sites
- Anadromous Fish Spawning Areas
- Animal Operation Permits
- Artificial Marine Reefs
- Beach Access Sites
- Benthic Monitoring Results
- Bottom Sediment Sampling Sites
- Cemeteries
- Churches
- Citizen Water Quality Monitoring Sites
- Closed Shellfish Harvesting Areas
- Coastal Reserves
- Conditionally Approved Shellfish Harvesting Areas
- Conservation Easements, US Fish \& Wildlife Service
- Conservation Tax Credit Properties
- Discharger Coalitions' Monitoring Sites
- Ecosystem Enhancement Program (EEP) Local Watershed Plans, 2004
- Ecosystem Enhancement Program (EEP) Targeted Local Watersheds, 2004
- Federal Land Ownership
- Fish Community Sampling Sites
- Fisheries Nursery Areas
- Game Lands - Wildlife Resources Commission
- Groundwater Incidents, unverified
- Groundwater Recharge/Discharge
- Hazardous Substance Disposal Sites
- Hazardous Waste Facilities
- Heavy Metal \& Organic-Rich Mud Pollutant Sample Sites
- High Quality Water and Outstanding Resource Water Management Zones
- Hurricane Storm Surge Inundation Areas
- Land Trust Conservation Properties
- Land Trust Priority Areas
- Lands Managed for Conservation \& Open Space
- Macrosite Boundaries
- Megasite Boundaries
- National Pollutant Discharge Elimination System Sites (NPDES) Major and Minor

Table 1 - Environmental Features (cont.)

- National Wetlands Inventory
- North Carolina Coastal Region Evaluation of Wetland Significance (NC-CREWS)Public Water Supply Water Sources
- Recreation Projects - Land and Water
- Conservation Fund
- Shellfish Strata
- Significant Aquatic Endangered Species Habitats
- Solid Waste Facilities
- State Parks
- Submersed Rooted Vasculars
- Surface Water Intakes
- Trout Streams (DWQ)
- Water Distribution Systems - Water Treatment Plants
- Water Supply Watersheds
- Well Ground Water Intakes

Additionally, the following environmental features were considered but are not mapped due to restrictions associated with the sensitivity of the data.

Table 2 - Restricted Environmental Features

- Archaeological Sites
- Dedicated Nature Preserves and Registered Heritage Areas
- Historic National Register Districts
- Historic National Register Structures
- Historic Study List Districts Historic

Study List Structures

- Managed Areas National Heritage Element Occurrences
- Significant Natural Heritage Areas

Public Involvement

Public involvement is a key element in the transportation planning process. Adequate documentation of this process is essential for a seamless transfer of information from systems planning to project planning and design.

The Northwest Piedmont RPO requested the development of a comprehensive transportation plan for the Town of Yadkinville through a prioritized list of regional needs. A meeting was held with the Town of Yadkinville Board of Commissioners in December 2007 to formally initiate the study, provide an overview of the transportation planning process, and to gather input on area transportation needs.

Throughout the course of the study, the Transportation Planning Branch cooperatively worked with the Town of Yadkinville Steering Committee, which included a representative from the Town of Yadkinville, county staff, and the Northwest Piedmont RPO to provide information on current local plans, to develop transportation vision and goals, to discuss population and employment projections, and to develop proposed CTP recommendations. Refer to Appendix H for detailed information on the vision statement, the goals and objectives survey and a listing of committee members.

The public involvement process included holding one public drop-in session in the Town of Yadkinville to present the proposed Comprehensive Transportation Plan to the public and solicit comments. The meeting was held on November 19, 2009 at the Yadkinville Volunteer Fire Department. The session was publicized in the local newspaper and was held from 3:00-7:00 pm. No comment forms were submitted during the session.

A public hearing was held on March 1, 2010 during the Town of Yadkinville Commissioners meeting. The purpose of this meeting was to discuss the plan recommendations and to solicit further input from the public. The CTP was adopted during this meeting.

The Northwest Piedmont RPO endorsed the CTP on May 18, 2010. The North Carolina DOT adopted the Town of Yadkinville CTP on July 1, 2010.

Appendix A Resources and Contacts

North Carolina Department of Transportation

Customer Service Office

Contact information for other units within the NCDOT that are not listed in this appendix is available by calling the Customer Service Office or by visiting the NCDOT homepage:

> 1-877-DOT-4YOU
(1-877-368-4968)
https://apps.dot.state.nc.us/dot/directory/authenticated/ToC.aspx

Secretary of Transportation
Eugene A. Conti, Jr., Ph.D.
1501 Mail Service Center
Raleigh, NC 27699-1501
(919) 733-2520
gconti@ncdot.gov
http://www.ncdot.org/about/leadership/secretary.html

Board of Transportation Member
Mr. Samuel L. Halsey
307 Don Walters Road
Jefferson, NC 28640
(336) 246-5500
slhalsey@ncdot.gov
http://www.ncdot.gov/about/board/default.html

Highway Division Engineer

Contact the Division Engineer with general questions concerning NCDOT activities within each Division and for information on Small Urban Funds.
Mr. Michael Pettyjohn, PE
801 Statesville Rd
North Wilkesboro, NC 28659
(336) 667-9111
mpettyJohn@ncdot.gov
http://www.ncdot.gov/doh/operations/division11/

Division Project Manager

Contact the Division Project Manager with questions concerning transportation projects within each Division.

Mr. Joe Laws, PE
801 Statesville Rd
North Wilkesboro, NC 28659
(336) 903-9138
jlaws@ncdot.gov

Division Construction Engineer

Contact the Division Construction Engineer for information concerning major roadway improvements under construction.
Mr. Trent Beaver, PE
801 Statesville Rd
North Wilkesboro, NC 28659
(336) 903-9117
tbeaver@ncdot.gov

Division Traffic Engineer

Contact the Division Traffic Engineer for information concerning traffic signals, highway signs, pavement markings and crash history.
Mr. Dean Ledbetter, PE
801 Statesville Rd
North Wilkesboro, NC 28659
(336) 903-9129
dledbetter@ncdot.gov

Division Operations Engineer

Contact the Division Operations Engineer for information concerning facility operations.
Mr. Wayne Atkins, PE
801 Statesville Rd
North Wilkesboro, NC 28659
(336) 903-9122
watkins@ncdot.gov

Division Maintenance Engineer

Contact the Division Maintenance Engineer information regarding maintenance of all state roadways, improvement of secondary roads and other small improvement projects. The Division Maintenance Engineer also oversees the District Offices, the Bridge Maintenance Unit and the Equipment Unit.
Mr. Charles Reinhardt, PE
801 Statesville Rd
North Wilkesboro, NC 28659
(336) 903-9121
creinhardt@ncdot.gov

District Engineer

Contact the District Engineer for information on outdoor advertising, junkyard control, driveway permits, road additions, subdivision review and approval, Adopt A Highway program, encroachments on highway right of way, issuance of oversize/overwidth permits, paving priorities, secondary road construction program and road maintenance.
Mr. Brandon Whitaker, PE
PO Box 558
Elkin, NC 28621
(336) 835-4241
bwhitaker@ncdot.gov

Transportation Planning Branch (TPB)

Contact the Transportation Planning Branch for information on long-range multi-modal planning services.
1554 Mail Service Center
Raleigh, NC 27699-1554
(919) 733-4705
http://www.ncdot.gov/doh/preconstruct/tpb/

Northwest Piedmont Rural Planning Organization (RPO)

Contact the RPO for information on long-range multi-modal planning services.
Mr. Marc Allred
400 W. Fourth St. Suite 400
Winston-Salem, NC 27101
(336) 761-2111
mallred@nwpcog.org
http://www.nwpcog.dst.nc.us/

Strategic Planning Office

Contact the Strategic Planning Office for information concerning prioritization of transportation projects.
Mr. Don Voelker
1501 Mail Service Center
Raleigh, NC 27699-1501
(919) 715-0951
https://apps.dot.state.nc.us/dot/directory/authenticated/UnitPage.aspx?id=11054

Project Development \& Environmental Branch (PDEA)

Contact PDEA for information on environmental studies for projects that are included in the TIP.

1548 Mail Service Center
Raleigh, NC 27699-1548
(919) 733-3141
http://www.ncdot.gov/doh/preconstruct/pe/

Secondary Roads Office

Contact the Secondary Roads Office for information regarding the status for unpaved roads to be paved, additions and deletions of roads to the State maintained system and the Industrial Access Funds program.

1535 Mail Service Center
Raleigh, NC 27699-1535
(919) 733-3250
http://www.ncdot.gov/doh/operations/secondaryroads/

Program Development Branch

Contact the Program Development Branch for information concerning Roadway Official Corridor Maps, Feasibility Studies and the Transportation Improvement Program (TIP).

1534 Mail Service Center
Raleigh, NC 27699-1534
(919) 733-2039
http://www.ncdot.org/planning/development/

Public Transportation Division

Contact the Public Transportation Division for information public transit systems.
1550 Mail Service Center
Raleigh, NC 27699-1550
(919) 733-4713
http://www.ncdot.org/transit/nctransit/

Rail Division

Contact the Rail Division for rail information throughout the state.
1553 Mail Service Center
Raleigh, NC 27699-1553
(919) 733-7245
http://www.bytrain.org/

Division of Bicycle and Pedestrian Transportation

Contact this Division for bicycle and pedestrian transportation information throughout the state.
1552 Mail Service Center
Raleigh, NC 27699-1552
(919) 807-0777
http://www.ncdot.gov/transit/bicycle/

Bridge Maintenance Unit

Contact the Bridge Maintenance Unit for information on bridge management throughout the state.
1565 Mail Service Center
Raleigh, NC 27699-1565
(919) 733-4362
http://www.ncdot.gov/doh/operations/dp chief eng/maintenance/bridge/

Highway Design Branch

The Highway Design Branch consists of the Roadway Design, Structure Design, Photogrammetry, Location \& Surveys, Geotechnical, and Hydraulics Units. Contact the Highway Design Branch for information regarding design plans and proposals for road and bridge projects throughout the state.
1584 Mail Service Center
Raleigh, NC 27699-1584
(919) 250-4001
http://www.ncdot.gov/doh/preconstruct/highway/

Other State Government Offices

Department of Commerce - Division of Community Assistance

Contact the Department of Commerce for resources and services to help realize economic prosperity, plan for new growth and address community needs.
http://www.nccommerce.com/en/CommunityServices/

Appendix B
 Comprehensive Transportation Plan Definitions

Highway Map

For visual depiction of facility types for the following CTP classification, visit http://www.ncdot.gov/doh/preconstruct/tpb/SHC/facility/.

Facility Type Definitions

- Freeways
- Functional purpose - high mobility, high volume, high speed
- Posted speed - 55 mph or greater
- Cross section - minimum four lanes with continuous median
- Multi-modal elements - High Occupancy Vehicles (HOV)/High Occupancy Transit (HOT) lanes, busways, truck lanes, park-and-ride facilities at/near interchanges, adjacent shared use paths (separate from roadway and outside ROW)
- Type of access control - full control of access
- Access management - interchange spacing (urban - one mile; non-urban - three miles); at interchanges on the intersecting roadway, full control of access for $1,000 \mathrm{ft}$ or for 350 ft plus 650 ft island or median; use of frontage roads, rear service roads
- Intersecting facilities - interchange or grade separation (no signals or at-grade intersections)
- Driveways - not allowed
- Expressways
- Functional purpose - high mobility, high volume, medium-high speed
- Posted speed - 45 to 60 mph
- Cross section - minimum four lanes with median
- Multi-modal elements - HOV lanes, busways, very wide paved shoulders (rural), shared use paths (separate from roadway but within ROW)
- Type of access control - limited or partial control of access;
- Access management - minimum interchange/intersection spacing 2,000ft; median breaks only at intersections with minor roadways or to permit U-turns; use of frontage roads, rear service roads; driveways limited in location and number; use of acceleration/deceleration or right turning lanes
- Intersecting facilities - interchange; at-grade intersection for minor roadways; right-in/right-out and/or left-over or grade separation (no signalization for through traffic)
- Driveways - right-in/right-out only; direct driveway access via service roads or other alternate connections
- Boulevards
- Functional purpose - moderate mobility; moderate access, moderate volume, medium speed
- Posted speed - 30 to 55 mph
- Cross section - two or more lanes with median (median breaks allowed for Uturns per current NCDOT Driveway Manual
- Multi-modal elements - bus stops, bike lanes (urban) or wide paved shoulders (rural), sidewalks (urban - local government option)
- Type of access control - limited control of access, partial control of access, or no control of access
- Access management - two lane facilities may have medians with crossovers, medians with turning pockets or turning lanes; use of acceleration/deceleration or right turning lanes is optional; for abutting properties, use of shared driveways, internal out parcel access and cross-connectivity between adjacent properties is strongly encouraged
- Intersecting facilities - at grade intersections and driveways; interchanges at special locations with high volumes
- Driveways - primarily right-in/right-out, some right-in/right-out in combination with median leftovers; major driveways may be full movement when access is not possible using an alternate roadway
- Other Major Thoroughfares
- Functional purpose - balanced mobility and access, moderate volume, low to medium speed
- Posted speed - 25 to 55 mph
- Cross section - four or more lanes without median (US and NC routes may have less than four lanes)
- Multi-modal elements - bus stops, bike lanes/wide outer lane (urban) or wide paved shoulder (rural), sidewalks (urban)
- Type of access control - no control of access
- Access management - continuous left turn lanes; for abutting properties, use of shared driveways, internal out parcel access and cross-connectivity between adjacent properties is strongly encouraged
- Intersecting facilities - intersections and driveways
- Driveways - full movement on two lane roadway with center turn lane as permitted by the current NCDOT Driveway Manual

- Minor Thoroughfares

- Functional purpose - balanced mobility and access, moderate volume, low to medium speed
- Posted speed - 25 to 55 mph
- Cross section - ultimately three lanes (no more than one lane per direction) or less without median
- Multi-modal elements - bus stops, bike lanes/wide outer lane (urban) or wide paved shoulder (rural), sidewalks (urban)
- ROW - no control of access
- Access management - continuous left turn lanes; for abutting properties, use of shared driveways, internal out parcel access and cross-connectivity between adjacent properties is strongly encouraged
- Intersecting facilities - intersections and driveways
- Driveways - full movement on two lane with center turn lane as permitted by the current NCDOT Driveway Manual

Other Highway Map Definitions

- Existing - Roadway facilities that are not recommended to be improved.
- Needs Improvement - Roadway facilities that need to be improved for capacity, safety, or system continuity. The improvement to the facility may be widening, other operational strategies, increasing the level of access control along the facility, or a combination of improvements and strategies. "Needs improvement" does not refer to the maintenance needs of existing facilities.
- Recommended - Roadway facilities on new location that are needed in the future.
- Interchange - Through movement on intersecting roads is separated by a structure. Turning movement area accommodated by on/off ramps and loops.
- Grade Separation - Through movement on intersecting roads is separated by a structure. There is no direct access between the facilities.
- Full Control of Access - Connections to a facility provided only via ramps at interchanges. No private driveway connections allowed.
- Limited Control of Access - Connections to a facility provided only via ramps at interchanges (major crossings) and at-grade intersections (minor crossings and service roads). No private driveway connections allowed.
- Partial Control of Access - Connections to a facility provided via ramps at interchanges, at-grade intersections, and private driveways. Private driveway connections shall be defined as a maximum of one connection per parcel. One connection is defined as one ingress and one egress point. These may be combined to form a two-way driveway (most common) or separated to allow for better traffic flow through the parcel. The use of shared or consolidated connections is highly encouraged.
- No Control of Access - Connections to a facility provided via ramps at interchanges, at-grade intersections, and private driveways.

Public Transportation and Rail Map

- Bus Routes - The primary fixed route bus system for the area. Does not include demand response systems.
- Fixed Guideway - Any transit service that uses exclusive or controlled rights-of-way or rails, entirely or in part. The term includes heavy rail, commuter rail, light rail, monorail, trolleybus, aerial tramway, included plane, cable car, automated guideway transit, and ferryboats.
- Operational Strategies - Plans geared toward the non-single occupant vehicle. This includes but is not limited to HOV lanes or express bus service.
- Rail Corridor - Locations of railroad tracks that are either active or inactive tracks. These tracks were used for either freight or passenger service.
- Active - rail service is currently provided in the corridor; may include freight and/or passenger service
- Inactive - right of way exists; however, there is no service currently provided; tracks may or may not exist
- Recommended - It is desirable for future rail to be considered to serve an area.
- High Speed Rail Corridor - Corridor designated by the U.S. Department of Transportation as a potential high speed rail corridor.
- Existing - Corridor where high speed rail service is provided (there are currently no existing high speed corridor in North Carolina).
- Recommended - Proposed corridor for high speed rail service.
- Rail Stop - A railroad station or stop along the railroad tracks.
- Intermodal Connector - A location where more than one mode of transportation meet such as where light rail and a bus route come together in one location or a bus station.
- Park and Ride Lot - A strategically located parking lot that is free of charge to anyone who parks a vehicle and commutes by transit or in a carpool.

Bicycle Map

- On Road-Existing - Conditions for bicycling on the highway facility are adequate to safely accommodate cyclists.
- On Road-Needs Improvement - At the systems level, it is desirable for an existing highway facility to accommodate bicycle transportation; however, highway improvements are necessary to create safe travel conditions for the cyclists.
- On Road-Recommended - At the systems level, it is desirable for a recommended highway facility to accommodate bicycle transportation. The highway should be designed and built to safely accommodate cyclists.
- Off Road-Existing - A facility that accommodates only bicycle transportation and is physically separated from a highway facility either within the right-of-way or within an independent right-of-way.
- Off Road-Needs Improvement - A facility that accommodates only bicycle transportation and is physically separated from a highway facility either within the right-of-way or within an independent right-of-way that will not adequately serve future bicycle needs. Improvements may include but are not limited to, widening, paving (not re-paving or other maintenance activities), and improved horizontal or vertical alignment.
- Off Road-Recommended - A facility needed to accommodate only bicycle transportation and is physically separated from a highway facility either within the right-of-way or within an independent right-of-way.
- Multi-use Path-Existing - An existing facility physically separated from motor vehicle traffic that is either within the highway right-of-way or on an independent right-of-way that serves bicycle and pedestrian traffic. Sidewalks should not be designated as a multi-use path.
- Multi-use Path-Needs Improvement - An existing facility physically separated from motor vehicle traffic that is either within the highway right-of-way or on an independent right-of-way that serves bicycle and pedestrian traffic that will not adequately serve future needs. Improvements may include but are not limited to, widening, paving (not re-paving or other maintenance activities), and improved horizontal or vertical alignment. Sidewalks should not be designated as a multi-use path.
- Multi-use Path-Recommended - A facility physically separated from motor vehicle traffic that is either within the highway right-of-way or on an independent right-of-way that is needed to serve bicycle and pedestrian traffic. Sidewalks should not be designated as a multi-use path.
- Existing Grade Separation - Locations where existing "Off Road" facilities and "Multi-use Paths" are physically separated from existing highways, railroads, or other transportation facilities. These may be bridges, culverts, or other structures.
- Proposed Grade Separation - Locations where "Off Road" facilities and "Multi-use Paths" are recommended to be physically separated from existing or recommended highways, railroads, or other transportation facilities. These may be bridges, culverts, or other structures.

Pedestrian Map

- Sidewalk-Existing - Paved paths (including but not limited to concrete, asphalt, brick, stone, or wood) on both sides of a highway facility and within the highway right-of-way that are adequate to safely accommodate pedestrian traffic.
- Sidewalk-Needs Improvement - Improvements are needed to provide paved paths on both sides of a highway facility. The highway facility may or may not need improvements. Improvements do not include re-paving or other maintenance activities but may include: filling in gaps, widening sidewalks, or meeting ADA (Americans with Disabilities Act) requirements.
- Sidewalk-Recommended - At the systems level, it is desirable for a recommended highway facility to accommodate pedestrian transportation or to add sidewalks on an existing facility where no sidewalks currently exist. The highway should be designed and built to safely accommodate pedestrian traffic.
- Off Road-Existing - A facility that accommodates only pedestrian traffic and is physically separated from a highway facility usually within an independent right-ofway.
- Off Road-Needs Improvement - A facility that accommodates only pedestrian traffic and is physically separated from a highway facility usually within an independent right-of-way that will not adequately serve future pedestrian needs. Improvements may include but are not limited to, widening, paving (not re-paving or other maintenance activities), improved horizontal or vertical alignment, and meeting ADA requirements.
- Off Road-Recommended - A facility needed to accommodate only pedestrian traffic and is physically separated from a highway facility usually within an independent right-of-way.
- Multi-use Path-Existing - An existing facility physically separated from motor vehicle traffic that is either within the highway right-of-way or on an independent right-of-way that serves bicycle and pedestrian traffic. Sidewalks should not be designated as a multi-use path.
- Multi-use Path-Needs Improvement - An existing facility physically separated from motor vehicle traffic that is either within the highway right-of-way or on an independent right-of-way that serves bicycle and pedestrian traffic that will not adequately serve future needs. Improvements may include but are not limited to, widening, paving (not re-paving or other maintenance activities), and improved horizontal or vertical alignment. Sidewalks should not be designated as a multi-use path.
- Multi-use Path-Recommended - A facility physically separated from motor vehicle traffic that is either within the highway right-of-way or on an independent right-of-way that is needed to serve bicycle and pedestrian traffic. Sidewalks should not be designated as a multi-use path.
- Existing Grade Separation - Locations where existing "Off Road" facilities and "Multi-use Paths" are physically separated from existing highways, railroads, or other transportation facilities. These may be bridges, culverts, or other structures.
- Proposed Grade Separation - Locations where "Off Road" facilities and "Multi-use Paths" are recommended to be physically separated from existing or recommended highways, railroads, or other transportation facilities. These may be bridges, culverts, or other structures.

Appendix C CTP Inventory and Recommendations

Assumptions/ Notes:

- Local ID: This Local ID is the same as the one used for the Prioritization Project Submittal Tool. If a TIP project number exists it is listed as the ID. Otherwise, the following system is used to create a code for each recommended improvement: the first 4 letters of the county name is combined with a 4 digit unique numerical code followed by '-H' for highway, '-T' for public transportation, '-R' for rail, '-B’ for bicycle, '-M' for multi-use paths, or '-P' for pedestrian modes. If a different code is used along a route it indicates separate projects will probably be requested. Also, upper case alphabetic characters (i.e. ' A ', ' B ', or ' C ') are included after the numeric portion of the code if it is anticipated that project segmentation or phasing will be recommended.
- Jurisdiction: Jurisdictions listed are based on municipal limits, county boundaries, and MPO Metropolitan Planning Area Boundaries (MAB), as applicable.
- Existing Cross-Section: Listed under '(ft)' is the approximate width of the roadway from edge of pavement to edge of pavement. Listed under 'lanes' is the total number of lanes, with the letter ' D ' if the facility is divided.
- Existing ROW: The estimated existing right-of-way is based on NCDOT Roadway Characteristics and NCDOT Division 11 information. These right-of-way amounts are approximate and may vary.
- Existing and Proposed Capacity: The estimated capacities are given in vehicles per day (vpd) based on LOS D for existing facilities and LOS C for new facilities. These capacity estimates were developed using NCLOS, as documented in Chapter II.
- Existing and Proposed AADT (Annual Average Daily Traffic) volumes, given in vehicles per day (vpd), are estimates only based on a systems-level analysis. The ' 2035 AADT $\mathrm{E}+\mathrm{C}$ ' is an estimate of the volume in 2035 with only existing plus committed projects assumed to be in place, where committed is defined as projects programmed for construction in the Transportation Improvement Program (TIP). The '2035 AADT with CTP' is an estimate of the volume in 2035 with all proposed CTP improvements assumed to be in place. The ' 2035 AADT with CTP' is shown in bold if it exceeds the proposed capacity, indicating an unmet need. For additional information about the assumptions and techniques used to develop the AADT volume estimates, refer to Chapter II.
- Proposed Cross-section: The CTP recommended cross-sections are listed by code; for depiction of the cross-section, refer to Appendix D. An entry of 'ADQ' indicates the existing facility is adequate and there are no improvements recommended as part of the CTP.
- CTP Classification: The CTP classification is listed, as shown on the adopted CTP Maps (see Figure 1). Abbreviations are $\mathrm{F}=$ freeway, $\mathrm{E}=$ expressway, $\mathrm{B}=$ boulevard, $\mathrm{Maj}=$ other major thoroughfare, Min= minor thoroughfare.
- Tier: Tiers are defined as part of the North Carolina Mulitmodal Investment Network (NCMIN). Abbreviations are $\mathrm{Sta}=$ statewide tier, Reg= regional tier, Sub= subregional tier.
- Other Modes: If there is an improvement recommended for another mode of transportation that relates to the given recommendation, it is indicated by an alphabetic code ($\mathrm{H}=$ highway, $\mathrm{T}=$ public transportation, $\mathrm{R}=$ rail, $\mathrm{B}=$ bicycle, and $\mathrm{P}=$ pedestrian).

YADKINVILLE CTP INVENTORY AND RECOMMENDATIONS

HIGHWAY																		
ID	Facility	Section (From - To)	Jurisdiction	Dist. (mi)	2009 Existing System						2035 Proposed System					CTP Classification	Tier	Other Modes
					CrossSection		ROW (ft)	$\begin{gathered} \text { Speed } \\ \text { Limit } \\ (\mathrm{mph}) \end{gathered}$	Existing Capacity (vpd)	$\begin{array}{r} 2009 \\ \text { AADT } \\ \hline \end{array}$	$\begin{gathered} 2035 \\ \text { AADT } \\ E+C \end{gathered}$	$\begin{gathered} 2035 \\ \text { AADT } \\ \text { with } \\ \text { CTP } \\ \hline \end{gathered}$	Proposed Capacity (vpd)	Rec. CrossSection	$\begin{array}{\|c\|c\|} \text { ROW } \\ (\mathrm{ft}) \end{array}$			
					(ft)	lanes												
	US 421	PAB (East) - SR 1765	Yadkinville	0.3	48	4	240	55	56600	21000	35200	35200	ADQ	ADQ	ADQ	Frwy	Sta	T
	US 421	SR 1765 -US 601	Yadkinville	1.1	48	4	240	55	56600	20000	35200	35200	ADQ	ADQ	ADQ	Frwy	Sta	T
	US 421	US 601 - PAB (West)	Yadkinville	2.4	48	4	240	55	56600	19000	35200	35200	ADQ	ADQ	ADQ	Frwy	Sta	T
YADK0001-H	US 601	PAB (South) - US 421	Yadkinville	1.2	20-48	2	60	35-55	9000	8900	10700	10700	39800	3B	80	Maj	Reg	P
	US 601	US 421 - SR 1146	Yadkinville	0.5	52-56	4	80-110	35	39800	17300	18200	17800	ADQ	ADQ	ADQ	Maj	Reg	P
	US 601	SR 1146 - SR 1314	Yadkinville	0.2	52	4	80	35	39800	10700	11600	11200	ADQ	ADQ	ADQ	Maj	Reg	P
YADK0001-H	US 601	SR 1314-SR 1500	Yadkinville	0.3	52-30	2	80-60	35-45	10600	9500	11300	10500	39800	3B	80	Maj	Reg	P
YADK0001-H	US 601	SR 1500-SR 1134	Yadkinville	0.5	30-22	2	60	45	9000	9500	11300	10500	39800	3B	80	Maj	Reg	P
YADK0001-H	US 601	SR 1134 - PAB (North)	Yadkinville	1.1	22-20	2	60	45-55	9000	6900	9700	9700	39800	2A	60	Maj	Reg	P
	Beroth Drive/Beamer Road (SR 1415)	US 601 - SR 1134	Yadkinville	1.6	18-24	2	0	35-55	6800	400	900	900	ADQ	ADQ	ADQ	Min	Sub	
YADK0002-H	Beamer Rd Realignment		Yadkinville	0.4	-	-	-	-	-	-	-	1100	6800	2A	60	Min	Sub	
YADK0003-H	Proposed US 421 Connector and Interchange	S of SR 1134/SR 1415 Intersection	Yadkinville	0.2	-	-	-	-	-	-	-	800	6800	2A	60	Min	Sub	
	Billy Reynolds Road (SR 1134)	SR 1142 - PAB (West)	Yadkinville	0.6	22	2	0	55	6800	900	1500	1600	ADQ	ADQ	ADQ	Min	Sub	
	Country Club Rd (SR 1134)	US 601 - Dobbins Mill Rd	Yadkinville	0.5	16-20	2	0-60	35-55	6800	2500	2700	3000	ADQ	ADQ	ADQ	Min	Sub	
	Cross Creek Drive (SR 1700)	SR 1146 - SR 1634	Yadkinville	0.4	20	2	60	35	6800	100	300	300	ADQ	ADQ	ADQ	Min	Sub	
	Cross Creek Drive (SR 1700)	SR 1634-SR 1605	Yadkinville	0.6	18-20	2	60	35	6800	100	300	300	ADQ	ADQ	ADQ	Min	Sub	
	Dobbins Mill Road (SR 1134)	Country Club Rd - PAB (North)	Yadkinville	0.8	16-20	2	0-60	35-55	6800	2500	2700	2800	ADQ	ADQ	ADQ	Min	Sub	
	Fleming Road (SR 1142)	SR 1134 - SR 1314	Yadkinville	1.2	20	2	60	55	6800	700	1200	1200	ADQ	ADQ	ADQ	Min	Sub	
YADK0004-H	Hoots Road (SR 1150)	US 601 - PAB (West)	Yadkinville	1.8	20	2	60	55	6800	800	1500	1500	6800	2A	60	Min	Sub	
YADK0005-H	Lee Avenue (SR 1146)	SR 1765 - SR1634	Yadkinville	0.7	18	2	0	35	8000	5800	11000	11100	12100	2D	90	Min	Sub	P
YADK0005-H	Lee Avenue (SR 1146)	US 601-SR 1134	Yadkinville	1.1	18	2	0	35	8000	5100	6600	6600	12100	2D	90	Min	Sub	P
YADK0006-H	Lee Avenue (SR 1134)	SR 1146 - SR 1314	Yadkinville	0.1	16	2	0	35	8000	4700	7300	7300	12100	2D	90	Min	Sub	P
YADK0006-H	Lee Avenue (SR 1134)	SR 1314 - US 601	Yadkinville	0.8	20	2	0	35	8000	2700	3900	3900	12100	2D	90	Min	Sub	P
	Mackie Road (SR 1500)	SR 1134 - SR 1501	Yadkinville	0.6	20	2	0-60	55	6800	700	1000	1400	ADQ	ADQ	ADQ	Min	Sub	
YADK0007-H	Main Street (SR 1605)	PAB (East) - SR 1509	Yadkinville	0.8	18-20	2	0	55	9000	4700	5400	5400	9600	2A	60	Min	Sub	
	Main Street (SR 1605)	SR 1509-SR 1508	Yadkinville	0.3	24	2	0	55	10600	4700	5400	5400	ADQ	ADQ	ADQ	Min	Sub	
YADK0007-H	Main Street (SR 1605)	SR 1508-SR 1765	Yadkinville	0.3	18-19	2	0	55	9600	6200	7000	7000	9600	2A	60	Min	Sub	
YADK0008-H	Main Street (SR 1605)	SR 1765 - SR 1634	Yadkinville	0.5	18	2	0	35	9600	6200	7000	6600	9600	3B	60	Min	Sub	P
	Main Street (SR 1605)	SR 1634 - US 601	Yadkinville	0.5	38-46		0	35	9600	6200	7000	6600	ADQ	ADQ	ADQ	Min	Sub	P
	Main Street (SR 1314)	US 601 - Washington Street	Yadkinville	0.3	44-48	3	60	35	39800	5100	7400	7400	ADQ	ADQ	ADQ	Min	Sub	P
YADK0008-H	Main Street (SR 1314)	Washington Street - SR 1134	Yadkinville	0.5	20-32	2	60	35	10600	5100	7400	7400	9000	2D	90	Min	Sub	P
YADK0007-H	Main Street (SR 1314)	SR 1134 - PAB (West)	Yadkinville	1.6	32-22	2	60	35-55	9000	6700	8500	8500	9000	2D	90	Min	Sub	P
	Myers Road (SR 1508)	SR 1605 - PAB (North)	Yadkinville	1.6	18	2	50	55	6800	500	1000	1000	ADQ	ADQ	ADQ	Min	Sub	
YADK0009-H	Progress Lane Ext.	SR 1421 - SR 1146	Yadkinville	0.7	-	-	-	-	-	-	-	1500	10300	2D	90	Min	Sub	

HIGHWAY																		
ID	Facility	Section (From - To)	Jurisdiction	Dist. (mi)	2009 Existing System						2035 Proposed System					CTP Classification	Tier	Other Modes
					CrossSection		$\begin{gathered} \text { ROW } \\ (\mathrm{ft}) \\ \hline \end{gathered}$	Speed Limit (mph)	Existing Capacity (vpd)	$\begin{array}{r} 2009 \\ \text { AADT } \\ \hline \end{array}$	2035 AADT $E+C$	$\begin{aligned} & 2035 \\ & \text { AADT } \\ & \text { with } \\ & \text { CTP } \end{aligned}$	Proposed Capacity (vpd)	Rec. CrossSection	ROW(ft)			
					(ft)	lanes												
	Progress Lane (SR 1634)	SR 1146 - SR 1605	Yadkinville	0.8	28	2	50	35	10300	4700	8600	8800	ADQ	ADQ	ADQ	Min	Sub	
	Reavis Rd (SR 1141)	US421-PAB (West)	Yadkinville	0.3	24-50	2	200	55	10300	1100	1900	1900	ADQ	ADQ	ADQ	Min	Sub	
YADK0010-H	Sara Lee Blvd (SR 1421)	US 421 - Coolidge Street	Yadkinville	0.2	18-24	2	0-50	55	6800	600	1200	1500	10300	2D	90	Min	Sub	
	Shacktown Road (SR 1146)	PAB (East) - SR 1765	Yadkinville	0.4	18-36	2	0-80	45-55	8000	1600	2100	2100	ADQ	ADQ	ADQ	Min	Sub	
	Shacktown Road (SR 1146)	SR 1765 - SR 1700	Yadkinville	0.4	18-25	2	0-80	45-55	8000	5000	9200	9200	ADQ	ADQ	ADQ	Min	Sub	
YADK0011-H	Stone Bridge Drive (SR 1134)	SR 1146 - SR 1415	Yadkinville	0.7	16	2	0	35-55	6800	1400	2100	2500	10300	2A	60	Min	Sub	
YADK0011-H	Stone Bridge Drive (SR 1134)	SR 1415 - SR 1142	Yadkinville	0.8	16-22	2	0	55	6800	900	1500	1600	10300	2A	60	Min	Sub	
	Tennessee Street (SR 1500)	SR 1501 - US 601	Yadkinville	0.4	20	2	0-60	35-55	6800	700	1000	1000	ADQ	2D	90	Min	Sub	P
	Unifl Ind Drive (SR 1765)	PAB (South) - US 421	Yadkinville	0.1	36	2	150	45	10300	3500	6800	6800	ADQ	ADQ	ADQ	Min	Sub	
	Unifl Ind Drive (SR 1765)	US 421 - SR 1146	Yadkinville	0.4	36	2	150	45	10300	5000	9800	9800	ADQ	ADQ	ADQ	Min	Sub	
	Unifl Ind Drive (SR 1765)	SR 1146 - SR 1605	Yadkinville	0.8	24	2	100	45	10300	3000	6700	6700	ADQ	ADQ	ADQ	Min	Sub	
YADK0012-H	Unifl Ind Drive Ext.	SR 1605-SR 1501	Yadkinville	1.1	-	-	-	-	-	-	-	6700	10300	2B	60	Min	Sub	
	Union Cross Church Road (SR 1509)	SR 1605 - PAB (North)	Yadkinville	1.3	18	2	0	55	6800	2500	3600	3600	ADQ	ADQ	ADQ	Min	Sub	
	Williams Road (SR 1501)	SR 1500-PAB (North)	Yadkinville	0.3	16	2	40	55	6800	500	900	900	ADQ	ADQ	ADQ	Min	Sub	

PUBLIC TRANSPORTATION AND RAIL

PUBLIC TRANSPORTATION ${ }^{1}$							
ID	Facility/ Route	Section (From - To)	$\begin{array}{\|c\|} \hline \text { Speed } \\ \text { Limit } \\ (\mathrm{mph}) \end{array}$	$\begin{gathered} \text { Distance } \\ (\mathrm{mi}) \end{gathered}$	Existing System	Proposed System	
					Type	Type	Other Modes
	Greensboro - Boone Bus Route on US 421	PAB (East) - PAB (West)	20 to 55	3.9	Bus	N/A	H
	Park an ride lot	On US 601 at Pine Valley Rd	-	-	Bus	N/A	H
TRAN0001-T	Proposed park an ride lot	On US 601 at Sara Lee Blvd	-	-	N/A	Bus	H

[^0]
Appendix D Typical Cross Sections

Cross section requirements for roadways vary according to the capacity and level of service to be provided. Universal standards in the design of roadways are not practical. Each roadway section must be individually analyzed and its cross section determined based on the volume and type of projected traffic, existing capacity, desired level of service, and available right-of-way. These cross sections are typical for facilities on new location and where right-of-way constraints are not critical. For widening projects and urban projects with limited right-of-way, special cross sections should be developed that meet the needs of the project.

The typical cross sections were updated on December 7, 2010 to support the Department's "Complete Streets" policy that was adopted in July 2009. This guidance established design elements that emphasize safety, mobility, and accessibility for multiple modes of travel. These "typical" cross sections should be used as preliminary guidelines for comprehensive transportation planning, project planning and project design activities. The specific and final cross section details and right of way limits for projects will be established through the preparation of the National Environmental Policy Act (NEPA) documentation and through final plan preparation.

On all existing and proposed roadways delineated on the CTP, adequate right-of-way should be protected or acquired for the recommended cross sections. In addition to cross section and right-of-way recommendations for improvements, Appendix C may recommend ultimate needed right-of-way for the following situations:

- roadways which may require widening after the current planning period,
- roadways which are borderline adequate and accelerated traffic growth could render them deficient, and
- roadways where an urban curb and gutter cross section may be locally desirable because of urban development or redevelopment.
- roadways which may need to accommodate an additional transportation mode

FIGURE 7

TYPICAL HIGHWAY CROSS SECTIONS 2 LANES

WIDE PAVED SHOULDERS
 2 A POSTED SPEED $=55 \mathrm{MPH}$

2 B

WIDE PAVED SHOULDERS

2 C

TYPICAL HIGHWAY CROSS SECTIONS 2 LANES

2 D

2 F
BUFFERS AND SIDEWALKS WITHOUT A ROADWAY DITCH (2O MPH TO 45 MPH)
(TYPICALLY COASTAL AREA MANAGEMENT ACT COUNTIES)

TYPICAL HIGHWAY CROSS SECTIONS 2 LANES

2 G

CURB \& GUTTER-PARKING ON EACH SIDE

2 H
CURB \& GUTTER - PARKING ON ONE SIDE

2 I
RAISED MEDIAN WITH CURB \& GUTTER

TYPICAL HIGHWAY CROSS SECTIONS 3 LANES

3 A
WIDE PAVED SHOULDERS

3 B
CURB \& GUTTER WITH WIDE OUTSIDE LANES AND SIDEWALKS

TYPICAL HIGHWAY CROSS SECTIONS 4 LANES

4 B

DIVIDED WITH MEDIAN - NO CURB \& GUTTER PARTIAL CONTROL OF ACCESS

4 C
RAISED MEDIAN WITH WIDE OUTSIDE LANES AND SIDEWALKS

TYPICAL HIGHWAY CROSS SECTIONS 4 LANES

RAISED MEDIAN - CURB \& GUTTER WITH BIKE LANES AND SIDEWALKS

5 LANES

5 A

WIDE OUTSIDE LANES

TYPICAL HIGHWAY CROSS SECTIONS 6 LANES

8 LANES

TYPICAL MULTI - USE PATH

MULTI - USE PATH
ADJACENT TO RIGHT OF WAY OR SEPARATE PATHWAY

M A

MULTI - USE PATH ADJACENT TO CURB AND GUTTER

M B

Appendix E Level of Service Definitions

The relationship of travel demand compared to the roadway capacity determines the level of service (LOS) of a roadway. Six levels of service identify the range of possible conditions. Designations range from LOS A, which represents the best operating conditions, to LOS F, which represents the worst operating conditions.

Design requirements for roadways vary according to the desired capacity and level of service. LOS D indicates "practical capacity" of a roadway, or the capacity at which the public begins to express dissatisfaction. Recommended improvements and overall design of the transportation plan were based upon achieving a minimum LOS D on existing facilities and a LOS C on new facilities. The six levels of service are described below and illustrated in Figure 9.

- LOS A: Describes primarily free flow conditions. The motorist experiences a high level of physical and psychological comfort. The effects of minor incidents of breakdown are easily absorbed. Even at the maximum density, the average spacing between vehicles is about 528 ft , or 26 car lengths.
- LOS B: Represents reasonably free flow conditions. The ability to maneuver within the traffic stream is only slightly restricted. The lowest average spacing between vehicles is about 330 ft , or 18 car lengths.
- LOS C: Provides for stable operations, but flows approach the range in which small increases will cause substantial deterioration in service. Freedom to maneuver is noticeably restricted. Minor incidents may still be absorbed, but the local decline in service will be great. Queues may be expected to form behind any significant blockage. Minimum average spacing is in the range of 220 ft , or 11 car lengths.
- LOS D: Borders on unstable flow. Density begins to deteriorate somewhat more quickly with increasing flow. Small increases in flow can cause substantial deterioration in service. Freedom to maneuver is severely limited, and the driver experiences drastically reduced comfort levels. Minor incidents can be expected to create substantial queuing. At the limit, vehicles are spaced at about 165 ft , or 9 car lengths.
- LOS E: Describes operation at capacity. Operations at this level are extremely unstable, because there are virtually no usable gaps in the traffic stream. Any disruption to the traffic stream, such as a vehicle entering from a ramp, or changing lanes, requires the following vehicles to give way to admit the vehicle. This can establish a disruption wave that propagates through the upstream traffic flow. At capacity, the traffic stream has no ability to dissipate any disruption. Any incident can be expected to produce a serious breakdown with extensive queuing. Vehicles are spaced at approximately 6 car lengths, leaving little room to maneuver.
- LOS F: Describes forced or breakdown flow. Such conditions generally exist within queues forming behind breakdown points.

Figure 8 - Level Of Service Illustrations

Source: 2000 Highway Capacity Manual

Appendix F Traffic Crash Analysis

A crash analysis performed for the Town of Yadkinville CTP factored crash frequency, crash type, and crash severity. Crash frequency is the total number of reported crashes and contributes to the ranking of the most problematic intersections. Crash type provides a general description of the crash and allows the identification of any trends that may be correctable through roadway or intersection improvements. Crash severity is the crash rate based upon injuries and property damage incurred.

The severity of every crash is measured with a series of weighting factors developed by the NCDOT Division of Highways (DOH). These factors define a fatal or incapacitating crash as 47.7 times more severe than one involving only property damage and a crash resulting in minor injury is 11.8 times more severe than one with only property damage. In general, a higher severity index indicates more severe accidents. Listed below are levels of severity for various severity index ranges.

Severity	Severity Index
low	<6.0
average	6.0 to 7.0
moderate	7.0 to 14.0
high	14.0 to 20.0
very high	>20.0

Table 4 depicts a summary of the crashes occurring in the planning area between January 1, 2006 and December 31, 2008. The data represents locations with 10 or more crashes and/or a severity average greater than that of the state's 4.73 index. The "Total" column indicates the total number of accidents reported within $150-\mathrm{ft}$ of the intersection during the study period. The severity listed is the average crash severity for that location.

Table 4 - Crash Locations

| Map | Intersection | Average
 Index | Severity |
| :---: | :---: | :---: | :---: | Total Crashes

The NCDOT is actively involved with investigating and improving many of these locations. To request a more detailed analysis for any of the locations listed in Table 4, or other intersections of concern, contact the Division Traffic Engineer. Contact information for the Division Traffic Engineer is included in Appendix A.

Appendix G Bridge Deficiency Assessment

The Transportation Improvement Program (TIP) development process for bridge projects involves consideration of several evaluation methods in order to prioritize needed improvements. A sufficiency index is used to determine whether a bridge is sufficient to remain in service, or to what extent it is deficient. The index is a percentage in which 100 percent represents an entirely sufficient bridge and zero represents an entirely insufficient or deficient bridge. Factors evaluated in calculating the index are listed below.

- structural adequacy and safety
- serviceability and functional obsolescence
- essentiality for public use
- type of structure
- traffic safety features

The NCDOT Bridge Maintenance Unit inspects all bridges in North Carolina at least once every two years. A sufficiency rating for each bridge is calculated and establishes the eligibility and priority for replacement. Bridges having the highest priority are replaced as Federal and State funds become available.

A bridge is considered deficient if it is either structurally deficient or functionally obsolete. Structurally deficient means there are elements of the bridge that need to be monitored and/or repaired. The fact that a bridge is "structurally deficient" does not imply that it is likely to collapse or that it is unsafe. It means the bridge must be monitored, inspected and repaired/replaced at an appropriate time to maintain its structural integrity. A functionally obsolete bridge is one that was built to standards that are not used today. These bridges are not automatically rated as structurally deficient, nor are they inherently unsafe. Functionally obsolete bridges are those that do not have adequate lane widths, shoulder widths, or vertical clearances to serve current traffic demand or to meet the current geometric standards, or those that may be occasionally flooded.

A bridge must be classified as deficient in order to quality for Federal replacement funds. Additionally, the sufficiency rating must be less than 50% to qualify for replacement or less than 80% to qualify for rehabilitation under federal funding. Deficient bridges within the planning area are listed in Table 5.

Table 5 - Deficient Bridges

Bridge Number	Facility	Feature	Condition	CTP Project
69	US 421 (NBL)	US 601	Functionally Obsolete	
154	SR 1508	N Deep Creek	Functionally Obsolete	
220	SR 1141	US 421	Functionally Obsolete	

Appendix H Public Involvement

List of Steering Committee Members

Ken F. Larking, ICMA-CM - Town of Yadkinville Manager
Christopher Ong - Yadkin County Planning and Development Director
Joseph Sloop - Town of Yadkinville Planning and Development Director
Marc Allred - Northwest Piedmont Rural Planning Organization Coordinator

The Town of Yadkinville CTP Goals and Objectives Statement

Purpose: To work with the Town of Yadkinville to analyze all forms of transportation utilized within these areas and develop a Comprehensive Transportation Plan to act as a guide for all future modal travel needs and recommendations.

Vision: Enhance the connectivity of Town of Yadkinville through the development of a transportation network which promotes and supports economic development compatible with the existing and future environmental and land use patterns.

Provide safe, reliable, affordable, and convenient transportation choices to the residents of Town of Yadkinville as well as public awareness of those choices. Develop a regional transportation network that improves Town of Yadkinville residents' quality of life and surrounding environment.

Goals:

1. Insure the integrity of the existing Transportation system by encouraging planned and strategic development.
2. Encourage right of way preservation to ensure expansion of the existing system and future roadway projects.
3. Coordinate transportation and improvement needs between multiple jurisdictions.
4. Provide means to identifying and prioritizing transportation system needs on a local and regional scale.
5. Enhance and expand services for alternative needs of transportation including but not limited to transit, walking and bicycling through increased funding and cooperative regional planning.
6. Acknowledge ways to improve safety and congestion as well as programs to educate the public on traffic safety.
7. Recognize a sustainable transportation infrastructure linking the Town of Yadkinville with surrounding metropolitan areas including Winston Salem, Greensboro, and other areas.
8. Educate the public on general transportation issues as well as alternative forms of transportation.

Goals and Objectives Survey Results

The Town of Yadkinville Transportation Survey				
How important are the following transportation goals?				
Answer Options	Not Important	Important	Very Important	Response Count
Increase Public Transportation Options	30	84	75	189
Faster Automobile Travel Times	87	62	40	189
Preserve Community and Rural Character	18	99	77	194
Protect the Environment	7	71	116	194
Support Economic Growth	8	51	132	191
Improve Services for Special Needs	9	87	92	188
Increased Transportation Mode Choices. (More and/or safer opportunities to bike or walk to destinations instead of driving)	28	81	82	191
answered question				195
skipped question				2

Please select which of the following methods you agree with, for increasing a road's efficiency.

Answer Options	Agree	Disagree	Response Count
Building additional travel lanes	120	64	184
Making improvements to intersection such as better traffic signal timing, adding guard rails, creating roundabouts	173	13	186
Controlling the frequency and locations of driveways and cross streets that access the road	144	41	185
answered question			192
skipped question			5

Are you concerned with safety or crash problems at any specific locations?		
Answer Options	Response Percent	Response Count
No	47.4\%	92
Yes, Please describe the location, including the road name or intersection	52.6\%	102
answered question		194
skipped question		3
A caution light or something to slow cars down when they come over the hill at Gentry Family Funeral Home.		
601 near Burger King and McDonalds.		
601 N \& 421 stop light at courthouse Main Street need a left turn signal.		
In front of Burger King.		
The intersection of Dinkins Bottoms Rd., Baltimore Rd and old 421 east. The intersection has a flashing caution light, but too many cars run the stop sign and have wrecks.		
Corner of 601 and Main Street.		
All of Billy Reynolds Rd. and its intersection with Lee St. Due to the amount and type of traffic.		

W. Lee Ave. needs widening from 601 to Old 421. Large trucks travel this road. Intersection of W Lee \& Billie Reynolds Road needs improvement. Hard to turn left on Billy Reynolds if cars are pulled out too far at intersection especially at night or early morning.
Hwy 421 \& 601 speed limits are not observed and the situation worsens as time progresses. Seemingly nothing is done about it.
Making a left beside BP station from the side street onto 601 N . (Near 421). A very congested area. Intersection of Unifi Service Road and Shacktown Road in Yadkinville, NC.
Road beside BP/McDonalds to 601.
Maple Street east and west and Hwy 601.
Turning left at Hwy 601 \& main St. going both N. \& S. bound, Shacktown Rd. \& Unifi Rd intersection. Shacktown Rd. \& Hwy 601.
Some of these questions sound ridiculous for Yadkinville, but maybe I'm not able to see far enough in the future.
421 from Yadkin River to 421/40 split, large k\# accidents esp. from Lewisville to Peace Haven Rd. 601 from 421 into town, volume of traffic \& need for turning lane.
School Zones
US 601 \& Beroth St.
South from Lee Ave to Hoots Rd.
200 State Street one way traffic. Traffic from BBT exit continues to go the wrong way on 1 way street. There needs to be a turning lane in front of the restaurants in town-Yadkinville's Taco Bell, KFC, Burger King \& etc.

Beroth St \& S. State St.

Intersection at Unifi Industrial \& Shacktown Rd. Intersection of Brock Rd. and Fred Hinshaw Rd. The turn lane at stoplight in Yadkinville at 601 \& Main Street.
From intersection of 601 \& Lee Ave. down to Hardee's.
BP \& Hwy 601
At the square inn Yadkinville, need left turn signal going south on 601 because there are two northbound lanes of traffic to watch before turning left. Big problem on 601 in Yadkinville at service stations and fast food restaurants.
High school and Yadkinville's shopping center.
Unifi Industrial Blvd. and Shacktown Rd.
Main Street \& 601 Intersection.
Falcon Road @ Forbush High and soon Forbush Middle School.
Hwy 601-Lee Ave.
Falcon Road (just in general)
Shacktown \& Maplewood Church Rd., Unifi Plant with signal light.
East Main St Yadkinville side ditches between Unifi \& Success Academy.
US 601 south at McDonalds in Yadkinville.
HWY 601 Maple St crossing.
601 at left turn into road to McDonalds.
From Lee Ave south 601 to us 421 and the city limit on Hwy 601.
People coming out of town hall and CCB downtown.
Street which comes from McDonalds on to 601.
Any exit/entrance ramp with the people trying to get on \& off at the same lane.
Beroth \& 601
Lee Ave. \& west Main St.
4 Brothers gas station intersection at Hwy 601.
Intersection of Shacktown \& Unifi Industrial.
West Lee Ave. Exp. speeders
Burger King and Exxon needs traffic light.

Is truck traffic a problem in Yadkinville?		
Answer Options	Response Percent	Response Count
No	77.3\%	140
Yes. Please describe the location, including the road name or intersection.	22.7\%	41
answered question		181
skipped question		16
Billy Reynolds Rd.		
Large trucks on Billy Reynolds Road not wide enough to accommodate.		
Hwy 4221 \& 601.		
I-77 lack of enforcement of current laws.		
601 to Shacktown Rd.		
Main part of town.		
It is very difficult on the strip in town McDonalds, Taco Bell, KFC \& etc.		
Lee and Carolina Ave.		
601 thru Yadkinville		
downtown areas		
In downtown Yadkinville can't make turns safely.		
Maple Street		
Beroth \& US 601		
Lee Ave. \& S. State.		
Tractor trailers on US 601 coming from Boonville, or Mocksville.		
Unifi Industrial Rd., intersection between Unifi Plant \#5 \& Hwy 421 (Yadkinville). Intersection leaving McDonalds's between Four Brothers Amoco and Crystal Cleaners (Yadkinville).		
Lots of tractor trailers on US 601 Yadkinville.		
Shacktown Road, Hwy 601 \& Hwy 67.		
Trucks sometimes use my driveway for turning around and have broken my culvert.		
Old Hwy 421.		
Cedar St.		
HWY 601 HWY 67		
601 \& Maple, Maple \& Carolina Av.		
Hwy 601		
Unifi Trucks coming from \& going to New 421 from Uniti Industrial.		

When traveling in your area, do you find that you often have to go out of your way to get to your destination because: A direct route does not exist?

Answer Options		
No		
Yes, Please give examples		
Response		
Percent		

Yadkinville to East Bend (HWY 67) no good way to get there.
I-77 working zone.
Yadkinville to East Bend
(Hwy 601 through town) making left hand turns \& stopped traffic.
North-South routes between 421

New 421
E Hemlock to Yadkin Lumber Co.

The most direct route is too congested?	
Answer Options	Response Count
Yes	7
No	131
If yes, please give examples	31
answeredquestion	138
	59
To the shopping center.	
S. State Street.	
Leaving home - Billy Reynolds is over congested and used as a cut thru.	
McDonald's to 601.	
Not at this time.	
Just a volume issue, Peace Haven Rd. etc.	
US 601 \& Beroth St.	
Route too congested to enter 601	
Needs to be a stoplight at McDonald's (Amoco) \& a turning lane.	
From Lee Street to US 421 in afternoons close to Christmas.	
Business 40 East from Baptist Hospital to Hwy 158	
Beroth \& US 601	
Need light at 4 Brothers gas station and Hwy 601	
Hwy 601 from shopping center thru town.	
601 from Lee Ave to shopping center is too congested. We go Carolina Ave., Maple Rd., Lincoln to avoid 601.	
Try turning Nowth from Beroth Dr.w.w.w) onto US 601 in Yadkinville.	
School traffic in AM and PM.	
601 at For Brothers \#302 \& BP.	
Pull from Maple St. onto 601	
Hwy 601 at parts, people trying to make left turns hole up traffic causing wrecks.	
Hwy 601	
Lee to 601 N \& S	
Hwy 601 \& 421 areas.	
Exit in Yadkinville off 421	

Rail Traffic if possible-break our habit of everyone traveling 1 person per vehicle.each of affordable transportation for residents without transportation.	
No public transportation	
Better roads \& road maintenance	
Lack of public transportation and growing aging population.	
Distance between towns \& high cost of fuel for people traveling those distances, particularly poor people.	
No public	
None, that I have problem with.	
Turn lanes with lights at Lee Ave. (east0 * ypq. No stop light at Beroth \& 601 need turn lanes to Commu7nity College.	
Bridge over Yadkin River on old 421 (Enon) needs to be replaced.	
Need more stop lights.	
Lack of public transportation.	
I do infrequent public transportation to Winston-Salem.	
There are no key transportation issues in Yadkinville.	
Downtown Yadkinville roads are a mess! No forward looking when businesses were built on 601. Bad road maintenance asphalt is brought in toward center line. Roads are more narrow than before.	
More Medical Transportation Funding	
Downtown Yadkinville roads are a mess. No forward looking when businesses were built on 601. Bad road maintenance, too many pot holes. Every time the rural roads are repaved the asphalt is brought in toward center line. Roads are more narrow than before.	
	More medical transportation funding

To what areas would you like to have improved access?			
Answer Options	Response Percent	Response Count	
Winston-Salem	63.7\%	86	
Greensboro	17.0\%	23	
Wikes County	16.3\%	22	
Surry County	43.7\%	59	
Other	34.8\%	47	
	wered question		135
	ipped question		62
Statesville			
Stokes County			
Salisbury			
Danbury			
Elkin			
Dobson			
East bend			
Davie County			
Mocksville			

Are there areas where you would like to see sidewalks constructed or improved?
1
Answer Options
No
Yes. Please describe where.

Bike paths or lane on existing roads would be fine.
Close to elementary school.
Near town of Yadkinville. Hope this will be part of our new park.
West of town to downtown.
Old Hwy 421.
All over county
Alone Lee and Progress Lane
West Main Street
Old 421
would not use off-road trails, but would use sidewalks.
Connecting sidewalks from Yadkinville to the YMCA
All over Yadkinville
Anywhere in Yadkinville
North \& West Lee Ave. area
Areas that are very visible/excellent lighting for evening times.
Anywhere possible
HWY 601
City limits
City Park
Old 421

Would you use on-road bicycle facilities, such as bicycle lanes or wide shoulders?

Answer Options	Response Percent	Response Count	
No.	63.3\%	107	
Yes. Please desculveweweve.	36.7\%	62	
answered question			169
skipped question			28
Anywhere in Yadkin County,			
Towards W-S, Lewisville \& Clemmons.			
Nest generation might.			
Where available.			
Billy Reynolds Rd. Lee St. Hwy 601 thru town.			
If bicyclist are going to continue to use main roads, then there needs to be bicycle lanes.			
601, Main St. \& Lee Ave.			
Lee Avenue, Main St. \& 601.			
Anywhere feasible			
421 Service Road			
All around Yadkinville to the YMCA east to Forbush High West to Starmount High.			
Boonville			

We would like to know about your walking habits. For each purpose or destination below, please indicate how frequently you walk.

Answer Options	Regularly	Occasionally	Never	Response Count
Fitness/Exercise	78	93	13	184
Get to School	3	8	147	158
Get to Work	7	24	131	162
Get to Park and Ride Lot	5	30	126	161
Shopping/Errands	41	68	60	169
Restaurants	26	56	81	163
Entertainment	10	40	104	154
Other	8	28	48	84

Would you use park-and-ride lots? (A park-and-ride lot is a parking area where you can leave your car and take pubic transportation or carpool to your destination.)		
Answer Options	Response Percent	Response Count
Yes.	49.7\%	89
No.	50.3\%	90
answered question		179
skipped question		18

Please answer 'yes' or 'no' if you would use each service listed below			
Answer Options	Yes	No	Response Count
Bus Service to Charlotte	58	113	171
Bus Service to the Triad	86	91	177
Amtrak /Passenger Rail service	93	84	177
answered question			185
skipped question			12

Raleigh
For out of state locations.
Danbury
Mocksville, Winston-Salem
To Amtrack locally
WS downtown if could co-ordinate with work schedule.
Winston-Salem, Elkin
Other cities stops along I 77 as Statesville, Mooresville.
Maybe
Raleigh, Asheville
Chapel Hill
Winston-Salem and Elkin.
Yadkin to Winston-Salem
Winston-Salem
Winston-Salem for doctor appointments
Mocksville \& North Wilkesboro
W-S
I would use Amtrak/passenger rail service to Ralewigh if it rav frequently with limitew stovs and goow connections in Raleigh.
Winston-Salem, Mocksville, Elkin
Winston-Salem Raleigh
Winston-Salem
Mocksville and Elkin
Airports, Raleigh, Greensboro \& Charlotte
Elkin \& Mt. Airy
Winston-Salem \& Boone
Boone \& Winston-Salem.
Forsyth Memorial and Baptist Hospitals.
Forsyth Memorial and Baptist Hospitals

What is your age?		
Answer Options	Response Percent	Response Count
Under 18	0.0\%	0
18-24	1.6\%	3
25-34	5.3\%	10
35-44	12.1\%	23
45-55	27.9\%	53
55-64	23.7\%	45
65-74	20.0\%	38
Over 75	9.5\%	18
answered question		190
	ipped question	7

How would you classify your race?		
Answer Options	Response Percent	Response Count
White	93.2\%	178
Black	2.6\%	5
Native American	1.0\%	2
Hispanic	2.1\%	4
Asian	0.5\%	1
Other	0.5\%	1
answered question		191
	ipped question	6

How many people, including yourself, live in your household?

Answer Options	Response Percent	Response Count
1	18.4\%	35
2	53.7\%	102
3	12.6\%	24
4	8.9\%	17
5	4.7\%	9
6	1.6\%	3
7	0.0\%	0
8 or more	0.0\%	0
answered question		190
- $\square_{\text {ancmax }}$	kipped question	7

What is your Zip Code?			
Answer Options	Response Percent	Response Count	
27055	91.1\%	163	
Other (please specify)	8.9\%	16	
answered question			179
skipped question [,			
27018			
None			
27011			
N/A			
27011 \& 27020			
27104			

Where did you hear about this survey?		
Answer Options	Response Percent	Response Count
Government Building	0.6\%	1
Church	0.0\%	0
Newsletter	0.0\%	0
Private Business	0.6\%	1
Newspaper	1.1\%	2
Other (please specify)	97.7\%	170
	wered question	
	ipped question	
Work		
Mail		
My Employer		

Public Workshop at the Yadkinville Volunteer Fire Department

The public workshop took place at the Yadkinville Volunteer Fire Department on November 19, 2009 from 3:00-7:00 pm. There was a presentation that detailed the draft recommendations of the Town of Yadkinville CTP. Eight citizens attended the workshop. No major/controversial issues were raised. As part of the discussion, accident prone intersections and traffic congestion areas were discussed.

[^0]: ${ }^{1}$ Only major public transportation routes and proposals are shown here. For further documentation of the public transportation system, refer to the Piedmont Triad Regional Transit Development Plan located at http://www.partnc.org/rtdp.html

